ಪೆರಾಕ್ಸಿಸೋಮ್

testwikiದಿಂದ
ನ್ಯಾವಿಗೇಷನ್‌ಗೆ ಹೋಗು ಹುಡುಕಲು ಹೋಗು
ಪೆರಾಕ್ಸಿಸೋಮ್ನ ಮೂಲ ರಚನೆ

ಚಿತ್ರ:Distribution of peroxisomes labelled with a monomeric eqFP611 variant in HEK293 cells during mitosis - pone.0004391.s005.ogv

Peroxisome in rat neonatal cardiomyocyte staining The SelectFX Alexa Fluor 488 Peroxisome Labeling Kit directed against peroxisomal membrane protein 70 (PMP 70)
ಇಲಿ ನವಜಾತ ಕಾರ್ಡಿಯೋಮಯೊಸೈಟ್ನಲ್ಲಿ ಪೆರಾಕ್ಸಿಸೋಮ್

ಪೆರಾಕ್ಸಿಸೋಮ್ (ಟೆಂಪ್ಲೇಟು:IPA-all) [] ಪೊರೆಯನ್ನು ಸುತ್ತುವರಿಯುವಂತಹ ಒಂದು ಆರ್ಗನೆಲ್ಲೆ ( ಮೊದಲಿನಿಂದಲೂ ಮೈಕ್ರೊಬಾಡಿ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ ) ಆಗಿದೆ, ಇವು ಯೂಕ್ಯಾರಿಯೋಟಿಕ್ ಜೀವಕೋಶಗಳ ಸೈಟೊಪ್ಲಾಸ್ಮ್ ನಲ್ಲಿ ವಾಸಿಸುತ್ತವೆ.[] ಪೆರಾಕ್ಸಿಸೋಮ್ ಗಳು ಆಮ್ಲೀಯ ಆರ್ಗನೆಲ್ಲೆ ಗಳಾಗಿವೆ. ಆಣ್ವಿಕ ಆಮ್ಲಜನಕವು ಸಹತಲಾಧಾರವಾಗಿ ಕಾರ್ಯನಿರ್ವಹಿಸುವುದರ ಪರಿಣಾಮವಾಗಿ ಹೈಡ್ರೋಜನ್ಪೆರಾಕ್ಸೈಡ್ (H2O2) ರೂಪುಗೊಳ್ಳುತ್ತದೆ. ಪೆರಾಕ್ಸಿಸೋಮ್‌ಗಳು ಹೈಡ್ರೋಜನ್ಪೆರಾಕ್ಸೈಡ್ ಉತ್ಪಾದಿಸುವ ಮತ್ತು ಸ್ಕ್ಯಾವೆಂಜಿಂಗ್ಚಟುವಟಿಕೆಗಳಲ್ಲಿ ಪ್ರಮುಖ ಪಾತ್ರ ವಹಿಸುತ್ತವೆ. ಲಿಪಿಡ್ ಚಯಾಪಚಯಮತ್ತು ಪ್ರತಿಕ್ರಿಯಾತ್ಮಕ ಆಮ್ಲಜನಕದ ಪ್ರಭೇದಗಳ ಪರಿವರ್ತನೆಯಲ್ಲಿಯೂ ಕೂಡ ಇದರ ಕಾರ್ಯ ಪ್ರಮುಖ. ಪೆರಾಕ್ಸಿಸಮ್ ಗಳು ಬಹಳ ದೀರ್ಘ ಸರಣಿ ಕೊಬ್ಬಿನ ಆಮ್ಲಗಳ, ಬ್ರಾಂಚ್ ಸರಣಿ ಕೊಬ್ಬಿನ ಆಮ್ಲಗಳ, ಪಿತ್ತರಸ ಕೊಬ್ಬಿನಾಮ್ಲಗಳ (ಯಕೃತ್ತಿನಲ್ಲಿ), ಡಿ ಅಮೈನೋಆಮ್ಲಗಳ, ಪಾಲಿಅಮೈನ್ ಗಳ, ಚಯಾಪಚಯ ಕ್ರಿಯೆಯಲ್ಲಿ ಪಾತ್ರವಹಿಸುತ್ತದೆ, ಹಾಗು ಪ್ರತಿಕ್ರಿಯಾತ್ಮಕ ಆಮ್ಲಜನಕದ ಪ್ರಭೇದಗಳ ಸಂಕೋಚನ ಕ್ರಿಯೆಯಲ್ಲಿ, ನಿರ್ದಿಷ್ಟವಾಗಿ ಹೈಡ್ರೋಜನ್ಪೆರಾಕ್ಸೈಡ್ [] ಮತ್ತು ಪ್ಲಾಸ್ಮೋಜೆನ್ಸ್ ಜೈವಿಕಉತ್ಪತ್ತಿಯಲ್ಲಿ ಪ್ರಮುಖ ಪಾತ್ರ ವಹಿಸುತ್ತವೆ. ಅಂದರೆ, ಈಥರ್ ಫಾಸ್ಫೋಲಿಪಿಡ್ ಸಸ್ತನಿಗಳಮಿದುಳಿನಲ್ಲಿ ಮತ್ತು ಶ್ವಾಸಕೋಶದ ಸಾಮಾನ್ಯ ಕಾರ್ಯ ವಿಮರ್ಶಾತ್ಮಕ.[]

ಪೆಂಟೋಸ್ ಫಾಸ್ಫೇಟ್ ಮಾರ್ಗದ,[] ಎರಡು ಕಿಣ್ವಗಳ (ಗ್ಲೂಕೋಸ್-6-ಫಾಸ್ಫೇಟ್ಡಿಹೈಡ್ರೋಜಿನೇಸ್ ಮತ್ತು 6- ಫಾಸ್ಫೊಗ್ಲುಕೋನೇಟ್ಡಿಹೈಡ್ರೋಜಿನೇಸ್) ಒಟ್ಟು ಕಾರ್ಯದ ಶೇಕಡಾ ೧೦ ರಷ್ಟು ಹೊಂದಿರುತ್ತದೆ. ಇದು ಶಕ್ತಿಯ ಚಯಾಪಚಯಕ್ರಿಯೆಗೆ ಮುಖ್ಯವಾಗಿದೆ[].ಪ್ರಾಣಿಗಳಲ್ಲಿ ಐಸೊಪ್ರೆನಾಯ್ಡ್ ಮತ್ತು ಕೊಲೆಸ್ಟ್ರಾಲ್ ಸಂಶ್ಲೇಷಣೆಯಲ್ಲಿ ಪೆರಾಕ್ಸಿಸೋಮ್‌ಗಳುಭಾಗಿಯಾಗಿವೆಯೇ ಎಂದು ತೀವ್ರವಾಗಿ ಚರ್ಚಿಸಲಾಗಿದೆ.[]

ಇತರ ತಿಳಿದಿರುವ ಪೆರಾಕ್ಸೋಮಲ್ ಕಾರ್ಯಚಟುವಟಿಕೆಗಳು ಮೊಳಕೆಯೊಡಿದಿರುವ ಬೀಜಗಳಲ್ಲಿನ ಗ್ಲೈಆಕ್ಸಿಲೇಟ್ ಸೈಕಲ್, ಎಲೆಗಳಲ್ಲಿನ ಫೋಟೋರೆಸ್ಪಿರೇಷನ್,[] ಟ್ರೈಪನೊಸೊಮ್ಸ್ ಗ್ಲೈಕಾಲಿಸಿಸ್ ರಲ್ಲಿ (ಗ್ಲೈಕೋಸೋಮ್‌ಗಳು ), ಮತ್ತು ಮೆಥನಾಲ್ ಅಥವಾ ಅಮೈನ್ ಉತ್ಕರ್ಷಣಗಳಲ್ಲಿ.

ಇತಿಹಾಸ

ಪೆರಾಕ್ಸಿಸಮ್ ಗಳನ್ನು ಮೊದಲು ಸ್ವೀಡಿಶ್ ಡಾಕ್ಟರಲ್ ವಿದ್ಯಾರ್ಥಿಯಾದ ಜೆ ರೊಢಿನ್ ೧೯೫೪ ರಲ್ಲಿ ಅಧ್ಯಯನ ಮಾಡಿದ್ದರು.[] ೧೯೬೭ ರಲ್ಲಿ ಬೆಲ್ಜಿಯನ್ ಸೈಟೊಲೊಜಿಸ್ಟ ಕ್ರಿಶ್ಚಿಯನ್ ಡೆ ಡುವೆ ರವರು ಆರ್ಗನೆಲ್ಲೆ ಗಳನ್ನು ಗುರುತಿಸದ್ದರು[].ಡುವೆ ಮತ್ತುಸಹೊದ್ಯೋಗಿಗಳು ಪೆರಾಕ್ಸಿಸೋಮ್ ಗಳಲ್ಲಿ ಹೈಡ್ರೋಜನ್ ಪೆರಾಕ್ಸೈಡ್ (H2O2) ಉತ್ಪಾದನೆಯಲ್ಲಿ ಹಲವಾರು ಆಕ್ಸಿಡೇಸ್‌ಗಳು ಇರುತ್ತವೆಯೆಂದು, ಮತ್ತು ಹೈಡ್ರೋಜನ್ಪೆರಾಕ್ಸೈಡ್ (H2O2) ವಿಭಜನೆಗೊಂಡು ಹೈಡ್ರೋಜನ್ ಮತ್ತು ನೀರಿನ ಉತ್ಪಾದನೆಯಾಗುತ್ತದೆಯೆಂದು ಕಂಡುಹಿಡಿದಿದ್ದರು, ಇದರಿಂದಾಗಿಯೇ ಇವುಗಳಿಗೆ "ಮೈಕ್ರೊಬಾಡಿಗಳು" ಅನ್ನುವ ಬದಲು "ಪೆರಾಕ್ಸಿಸೋಮ್ಗಳು" ಎಂದು ಹೆಸರಿಟ್ಟರು. ನಂತರ, ಫೈರ್ ಫ್ಲೈ ಲೂಸಿಫೆರೇಸ್ ಅನ್ನು ಸಸ್ತನಿ ಕೋಶಗಳಲ್ಲಿನ ಪೆರಾಕ್ಸಿಸೋಮ್‌ಗಳಿಗೆ ಹೊಂದಿಸಲಾಯಿತು.[][]

ರಚನಾತ್ಮಕ ವಿನ್ಯಾಸ

ಪೆರಾಕ್ಸಿಸೋಮ್‌ಗಳು ಸಣ್ಣ (0.1-1 µm ವ್ಯಾಸ) ಉಪಕೋಶೀಯ ವಿಭಾಗಗಳಾಗಿವೆ. ಹರಳಿನ ಆಕಾರದಲ್ಲಿ ಜೀವಕೋಶದ ಸೈಟೋಪ್ಲಾಸಂನಲ್ಲಿ ಬಯೋಮೆಂಬ್ರೇನ್‌ನಿಂದಆವೃತವಾಗಿವೆ[೧೦][೧೧].ವಿಭಾಗೀಕರಣ, ಪೆರೋಕ್ಸಿಸೋಮ್ ಕೋಶೀಯಕಾರ್ಯಗಳ ಮತ್ತು ಜೀವಿಯ ಸೃಷ್ಟಿಕಾರ್ಯದ ಸಾಧ್ಯತೆಗೆ ವಿವಿಧ ಮೆಟಬೊಲಿಕ್ಪ್ರತಿಕ್ರಿಯೆಗಳಿಗೆ ಹೊಂದುವಂತೆ ವಾತಾವರಣವನ್ನು ಸೃಷ್ಟಿಸುತ್ತದೆ.

ಪೆರಾಕ್ಸಿಸೋಮ್‌ಗಳ ಸಂಖ್ಯೆ, ಗಾತ್ರ ಮತ್ತು ಪ್ರೋಟೀನ್ ಸಂಯೋಜನೆಯು ಕೋಶ ಪ್ರಕಾರ ಮತ್ತುಪರಿಸರ ಪರಿಸ್ಥಿತಿಗಳ ಮೇಲೆ ಅವಲಂಬಿತವಾಗಿರುತ್ತದೆ. ಉದಾಹರಣೆಗೆ, ಬೇಕರ್ಸ್ ಯೀಸ್ಟ್‌ನಲ್ಲಿ( ಎಸ್. ಸೆರೆವಿಸಿಯೆ ), ಉತ್ತಮ ಗ್ಲೂಕೋಸ್ ಪೂರೈಕೆಯೊಂದಿಗೆ, ಕೆಲವೇ ಕೆಲವು ಸಣ್ಣಪೆರಾಕ್ಸಿಸೋಮ್‌ಗಳು ಇರುತ್ತವೆ ಎಂದು ಗಮನಿಸಲಾಗಿದೆ. ಇದಕ್ಕೆ ವ್ಯತಿರಿಕ್ತವಾಗಿ, ಯೀಸ್ಟ್‌ಗಳನ್ನುದೀರ್ಘ ಸರಪಳಿ ಕೊಬ್ಬಿನಾಮ್ಲಗಳೊಂದಿಗೆ ಏಕೈಕ ಇಂಗಾಲದ ಮೂಲವಾಗಿ 20 ರಿಂದ 25 ದೊಡ್ಡಪೆರಾಕ್ಸಿಸೋಮ್‌ಗಳವರೆಗೆ ಪೂರೈಸಿದಾಗ ರಚಿಸಬಹುದು.[೧೨]

ಚಯಾಪಚಯ ಕ್ರಿಯೆಗಳು

ಪೆರಾಕ್ಸಿಸೋಮ್‌ನ ಒಂದು ಪ್ರಮುಖ ಕಾರ್ಯವೆಂದರೆ ಬೀಟಾ ಆಕ್ಸಿಡೀಕರಣ ಮೂಲಕ ದೀರ್ಘ ಸರಪಳಿ ಕೊಬ್ಬಿನಾಮ್ಲ ವಿಭಜನೆ. ಪ್ರಾಣಿ ಕೋಶಗಳಲ್ಲಿ, ದೀರ್ಘ ಸರಪಳಿ ಕೊಬ್ಬಿನಾಮ್ಲಗಳನ್ನು ಮಧ್ಯಮ ಸರಪಳಿಕೊಬ್ಬಿನಾಮ್ಲಗಳಾಗಿ ಪರಿವರ್ತಿಸಲಾಗುತ್ತದೆ, ನಂತರಅವುಗಳನ್ನು ಮೈಟೊಕಾಂಡ್ರಿಯಕ್ಕೆ ಒಪ್ಪಿಸಲಾಗುತ್ತದೆ ಮತ್ತು ಅಲ್ಲಿ ಅವು ಅಂತಿಮವಾಗಿ ಇಂಗಾಲದಡೈಆಕ್ಸೈಡ್ ಮತ್ತು ನೀರಿಗೆ ವಿಭಜನೆಯಾಗುತ್ತವೆ. ಯೀಸ್ಟ್ ಮತ್ತು ಸಸ್ಯ ಕೋಶಗಳಲ್ಲಿ, ಈ ಪ್ರಕ್ರಿಯೆಯನ್ನು ಪೆರಾಕ್ಸಿಸೋಮ್‌ಗಳಲ್ಲಿ ಪ್ರತ್ಯೇಕವಾಗಿ ನಡೆಸಲಾಗುತ್ತದೆ.[೧೩][೧೪]

ಪ್ರಾಣಿ ಕೋಶಗಳಲ್ಲಿ ಪ್ಲಾಸ್ಮಾಲೊಜೆನ್ ರಚನೆಯ ಮೊದಲ ಪ್ರತಿಕ್ರಿಯೆಗಳು ಪೆರಾಕ್ಸಿಸೋಮ್‌ಗಳಲ್ಲಿಯೂ ಕಂಡುಬರುತ್ತವೆ. ಪ್ಲಾಸ್ಮಾಲೊಜೆನ್ ಮೈಲಿನ್ ನಲ್ಲಿನ ಹೇರಳವಾಗಿ ದೊರೆಯುವಂತಹ ಫಾಸ್ಫೊಲಿಪಿಡ ಆಗಿದೆ. ಪ್ಲಾಸ್ಮಾಲೋಜೆನ್‌ಗಳಕೊರತೆಯು ನರ ಕೋಶಗಳ ಮೈಲೀಕರಣದಲ್ಲಿ ಆಳವಾದ ಅಸಹಜತೆಯನ್ನುಉಂಟುಮಾಡುತ್ತದೆ, ಪೆರಾಕ್ಸಿಸೋಮಲ್ಅಸ್ವಸ್ಥತೆಗಳು ನರಮಂಡಲ ಘಾಸಿಗೊಳಿಸಲು ಇದು ಕೂಡ ಒಂದು ಕಾರಣವಾಗಿದೆ. ಕೊಬ್ಬುಗಳು ಮತ್ತು ಕೊಬ್ಬನ್ನು ಕರಗಿಸುವ ಜೀವಸತ್ವಗಳಾದ ಪಿತ್ತರಸ ಆಮ್ಲಗಳ ಉತ್ಪಾದನೆಯಲ್ಲಿ ಪೆರಾಕ್ಸಿಸೋಮ್‌ಗಳು ಸಹ ಪಾತ್ರವಹಿಸುತ್ತವೆ, ಉದಾಹರಣೆಗೆ ವಿಟಮಿನ್ ಎ ಮತ್ತು ಕೆ. ಚರ್ಮದಕಾಯಿಲೆಗಳು ಪೆರಾಕ್ಸಿಸೋಮ್ ಕ್ರಿಯೆಯ ಮೇಲೆ ಪರಿಣಾಮ ಬೀರುವ ಆನುವಂಶಿಕ ಅಸ್ವಸ್ಥತೆಗಳ ಲಕ್ಷಣಗಳಾಗಿವೆ.[೧೪]

ಸಸ್ತನಿ ಪೆರಾಕ್ಸಿಸೋಮ್‌ಗಳಲ್ಲಿ ಪ್ರತ್ಯೇಕವಾಗಿ ಸಂಭವಿಸುವ ನಿರ್ದಿಷ್ಟ ಚಯಾಪಚಯಮಾರ್ಗಗಳು:[]

  • ಫೈಟಾನಿಕ್ ಆಮ್ಲದ α- ಆಕ್ಸಿಡೀಕರಣ
  • ದೀರ್ಘ-ಸರಪಳಿ ಮತ್ತು ಬಹುಅಪರ್ಯಾಪ್ತ ಕೊಬ್ಬಿನಾಮ್ಲಗಳ β- ಆಕ್ಸಿಡೀಕರಣ
  • ಪ್ಲಾಸ್ಮಾಲೋಜೆನ್ಗಳ ಜೈವಿಕ ಸಂಶ್ಲೇಷಣೆ
  • ಪಿತ್ತರಸ ಆಮ್ಲ ಸಂಶ್ಲೇಷಣೆಯ ಭಾಗವಾಗಿ ಕೋಲಿಕ್ ಆಮ್ಲದ ಸಂಯೋಗಿಕರಣ

ಪೆರಾಕ್ಸಿಸಮ್ ಗಳು ಡಿ-ಅಮಿನೊ ಆಮ್ಲ ಆಕ್ಸಿಡೇಸ್ ಮತ್ತು ಯೂರಿಕ್ ಆಮ್ಲಆಕ್ಸಿಡೇಸ್ ನಂತಹ ಆಕ್ಸಿಡೇಟಿವ್ ಕಿಣ್ವಗಳನ್ನು ಹೊಂದಿರುತ್ತೆ[೧೫].ಮಾನವನ ದೇಹದಲ್ಲಿ ಈ ಕೊನೆಯಕಿಣ್ವವು ಇರದ ಕಾರಣ ಯೂರಿಕ್ ಆಮ್ಲದ ಶೇಖರಣೆಯಿಂದ ಉಂಟಾಗುತ್ತದೆ, ತಾತ್ಪರ್ಯವಾಗಿ ಗೌಟ ರೋಗ ಉಂಟಾಗುತ್ತದೆ, ರೋಗವನ್ನು ವಿವರಿಸುತ್ತದೆ. ಪೆರಾಕ್ಸಿಸೋಮ್‌ನೊಳಗಿನ ಕೆಲವು ಕಿಣ್ವಗಳು, ಆಣ್ವಿಕಆಮ್ಲಜನಕವನ್ನು ಬಳಸುವ ಮೂಲಕ, ಆಕ್ಸಿಡೇಟಿವ್ ಪ್ರತಿಕ್ರಿಯೆಯಲ್ಲಿ ನಿರ್ದಿಷ್ಟಸಾವಯವ ತಲಾಧಾರಗಳಿಂದ (ಆರ್ ಎಂದು ಲೇಬಲ್ ಮಾಡಲಾದ) ಹೈಡ್ರೋಜನ್ಪರಮಾಣುಗಳನ್ನು ತೆಗೆದುಹಾಕಿ, ಹೈಡ್ರೋಜನ್ ಪೆರಾಕ್ಸೈಡ್ (H2O2) ಅನ್ನು ಉತ್ಪಾದಿಸುತ್ತದೆ:

RH2+O2R+H2O2

ಪೆರಾಕ್ಸಿಸೋಮಲ್ ಕಿಣ್ವವಾದ ಕ್ಯಾಟಲೇಸ್, ಪೆರಾಕ್ಸಿಡೇಶನ್ ಕ್ರಿಯೆಯಮೂಲಕ ಫೀನಾಲ್ಗಳು, ಫಾರ್ಮಿಕ್ ಆಮ್ಲ, ಫಾರ್ಮಾಲ್ಡಿಹೈಡ್ ಮತ್ತು ಆಲ್ಕೋಹಾಲ್ ಸೇರಿದಂತೆ ಇತರ ತಲಾಧಾರಗಳನ್ನು ಆಕ್ಸಿಡೀಕರಿಸಲು ಈ H2O2 ಅನ್ನು ಬಳಸುತ್ತದೆ :

H2O2+RH2R+2H2O, ಈ ಪ್ರಕ್ರಿಯೆಯಲ್ಲಿ ವಿಷಕಾರಿಯಾಂದಂಹ ಹೈಡ್ರೋಜನ್ ಪೆರಾಕ್ಸೈಡ್ (H2O2) ಅನ್ನು ತೆಗೆದುಹಾಕುತ್ತದೆ.

ಪಿತ್ತಜನಕಾಂಗ ಮತ್ತು ಮೂತ್ರಪಿಂಡದ ಕೋಶಗಳಲ್ಲಿ ಈ ಪ್ರತಿಕ್ರಿಯೆ ಮುಖ್ಯವಾಗಿದೆ, ಅಲ್ಲಿ ಪೆರಾಕ್ಸಿಸೋಮ್‌ಗಳು ರಕ್ತವನ್ನು ಪ್ರವೇಶಿಸುವ ವಿವಿಧ ವಿಷಕಾರಿ ವಸ್ತುಗಳನ್ನು ನಿರ್ವಿಷಗೊಳಿಸುತ್ತದೆ. ಆಲ್ಕೊಹಾಲ್ ಪಾನೀಯಗಳ ಮೂಲಕ ಮಾನವರುಸೇವಿಸುವ ಕನಿಷ್ಟ ೨೫ ರಷ್ಟು ಎಥೆನಾಲ್ ಈ ರೀತಿಯಾಗಿ ಅಸೆಟಾಲ್ಡಿಹೈಡ್ಗೆ ಆಕ್ಸಿಡೀಕರಣಗೊಳ್ಳುತ್ತದೆ[೧೩].ಯಾವಾಗ ಕೋಶಗಳಲ್ಲಿ ಈ H2O2 ಸಂಗ್ರಹವಾಗುತ್ತದೆಯೊ, ಈ ಕ್ರಿಯೆಯ ಮೂಲಕ ಕ್ಯಾಟಲೇಸ್ H2O ಗೆ ಪರಿವರ್ತಿಸುತ್ತದೆ:

2H2O22H2O+O2

ಮೇಲ್ವರ್ಗದ ಸಸ್ಯಗಳಲ್ಲಿ, ಪೆರಾಕ್ಸಿಸೋಮ್‌ಗಳು ಆಂಟಿ ಆಕ್ಸಿಡೆಟಿವ್ ಕಿಣ್ವಗಳಾದ ಸೂಪರ್ಆಕ್ಸೈಡ್ಡಿಸ್ಮುಟೇಸ್, ಆಸ್ಕೋರ್ಬೇಟ್-ಗ್ಲುಟಾಥಿಯೋನ್ ಚಕ್ರದ ಅಂಶಗಳು ಮತ್ತು ಪೆಂಟೋಸ್-ಫಾಸ್ಫೇಟ್ಹಾದಿಯ NADP- ಡಿಹೈಡ್ರೋಜಿನೇಸ್‌ಗಳ ಸಂಕೀರ್ಣ ಬ್ಯಾಟರಿಯನ್ನು ಸಹ ಒಳಗೊಂಡಿರುತ್ತವೆ. ಪೆರಾಕ್ಸಿಸೋಮ್‌ಗಳು ಸೂಪರ್ ಆಕ್ಸೈಡ್(O2•−) ಮತ್ತು ನೈಟ್ರಿಕ್ಆಕ್ಸೈಡ್ (NO) ರಾಡಿಕಲ್ಗಳನ್ನು ಉತ್ಪಾದಿಸುತ್ತವೆ ಎಂದು ನಿರೂಪಿಸಲಾಗಿದೆ[೧೬][೧೭] ಪೆರಾಕ್ಸಿಸೋಮಲ್ H2O2 ಸೇರಿದಂತೆ ಪ್ರತಿಕ್ರಿಯಾತ್ಮಕ ಆಮ್ಲಜನಕ ಪ್ರಭೇದಗಳು ಸಸ್ಯಗಳು ಮತ್ತು ಪ್ರಾಣಿಗಳಲ್ಲಿನ ಪ್ರಮುಖ ಸಂಕೇತ ಅಣುಗಳಾಗಿವೆ ಮತ್ತು ಮಾನವರಲ್ಲಿ ಆರೋಗ್ಯಕರ ವಯಸ್ಸಾದ ಮತ್ತು ವಯಸ್ಸಿಗೆ ಸಂಬಂಧಿಸಿದ ಕಾಯಿಲೆಗಳಿಗೆ ಕಾರಣವಾಗಿವೆ ಎಂಬುದಕ್ಕೆ ಈಗಪುರಾವೆಗಳಿವೆ.[೧೮]

ಶಿಲೀಂಧ್ರಗಳ ನುಗ್ಗುವಿಕೆಯ ವಿರುದ್ಧ ಹೋರಾಡುವಾಗ ಸಸ್ಯ ಕೋಶಗಳ ಪೆರಾಕ್ಸಿಸೋಮ್ಧ್ರುವೀಕರಿಸಲ್ಪಡುತ್ತದೆ.. ಪೆರಾಕ್ಸಿಸೋಮಲ್ಪ್ರೋಟೀನ್‌ (PEN2 and PEN3),[೧೯] ಕ್ರಿಯೆಯ ಮೂಲಕ ಈ ಸೊಂಕು ಗ್ಲುಕೋಸಿನೊಲೇಟ್ ಅಣುವನ್ನುಆಂಟಿಫಂಗಲ್ ಗಳನ್ನಾಗಿ ಮತ್ತು ಜೀವಕೋಶದ ಹೊರಭಾಗಕ್ಕೆ ತಲುಪಿಸಲು ಸಹಕಾರಿಯಾಗಿತ್ತವೆ.

ಸಸ್ತನಿಗಳು ಮತ್ತು ಮಾನವರಲ್ಲಿರುವ ಪೆರಾಕ್ಸಿಸೋಮ್‌ಗಳು ಆಂಟಿ-ವೈರಲ್ ರಕ್ಷಣಾ [೨೦] ಮತ್ತು ರೋಗಕಾರಕಗಳ ಯುದ್ಧಕ್ಕೆ ಸಹಕಾರಿಯಾಗಿದೆ.[೨೧]

ಪೆರಾಕ್ಸಿಸೋಮ್ ಜೋಡಣೆ

ಪೆರಾಕ್ಸಿಸೋಮ್‌ಗಳನ್ನು ಕೆಲವು ಪ್ರಾಯೋಗಿಕ ಪರಿಸ್ಥಿತಿಗಳಲ್ಲಿ ಎಂಡೋಪ್ಲಾಸ್ಮಿಕ್ರೆಟಿಕ್ಯುಲಮ್‌ನಿಂದ ಪಡೆಯಬಹುದು ಮತ್ತು ಪೊರೆಯ ಬೆಳವಣಿಗೆ ಮತ್ತು ಮೊದಲೇ ಅಸ್ತಿತ್ವದಲ್ಲಿರುವ ಅಂಗಗಳಿಂದ ವಿಭಜನೆಯಿಂದ ಪುನರಾವರ್ತಿಸಬಹುದು.[೨೨][೨೩][೨೪]

ಪೆರಾಕ್ಸಿಸೋಮ್ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಪ್ರೋಟೀನ್‌ಗಳನ್ನು ಆಮದು ಮಾಡುವ ಮೊದಲು ಸೈಟೋಪ್ಲಾಸಂನಲ್ಲಿ ಅನುವಾದಿಸಲಾಗುತ್ತದೆ. ಪೆರಾಕ್ಸಿಸೋಮ್ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಪ್ರೋಟೀನ್‌ಗಳ ಸಿ-ಟರ್ಮಿನಸ್ (ಪಿಟಿಎಸ್ 1) ಅಥವಾ ಎನ್-ಟರ್ಮಿನಸ್ (ಪಿಟಿಎಸ್2 ) ನಲ್ಲಿನ ನಿರ್ದಿಷ್ಟ ಅಮೈನೊ ಆಸಿಡ್ ಅನುಕ್ರಮಗಳನ್ನು ಆರ್ಗನೆಲ್ಲೆ ಒಳಗಡೆ ಆಮದುಮಾಡಿಕೊಳ್ಳಲು ಸಂಕೇತಿಸುತ್ತದೆ. ಪೆರಾಕ್ಸಿಸೋಮ್ ಜೈವಿಕ ಉತ್ಪಾದನೆ ಮತ್ತು ನಿರ್ವಹಣೆಯಲ್ಲಿ ಪ್ರಸ್ತುತ 36 ತಿಳಿದಿರುವ ಪ್ರೋಟೀನ್‌ಗಳಿವೆ, ಇದನ್ನು ಪೆರಾಕ್ಸಿನ್‌ಗಳು ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ,[೨೫] ಇದು ವಿವಿಧ ಜೀವಿಗಳಲ್ಲಿ ಪೆರಾಕ್ಸಿಸೋಮ್ ಜೋಡಣೆಯ ಪ್ರಕ್ರಿಯೆಯಲ್ಲಿ ಭಾಗವಹಿಸುತ್ತದೆ. ಸಸ್ತನಿ ಕೋಶಗಳಲ್ಲಿ 13 ವಿಶಿಷ್ಟ ಪೆರಾಕ್ಸಿನ್ಗಳಿವೆ. ಎಂಡೋಪ್ಲಾಸ್ಮಿಕ್ ರೆಟಿಕ್ಯುಲಮ್ (ಇಆರ್) ಅಥವಾ ಮೈಟೊಕಾಂಡ್ರಿಯಕ್ಕೆ ಪ್ರೋಟೀನ್ ಗಳನ್ನು ಆಮದು ಮಾಡಿಕೊಳ್ಳಬೇಕಾದಾಗ ಪ್ರೋಟೀನ್‌ಗಳನ್ನು ತಿರುಚುವ ಅಗತ್ಯವಿಲ್ಲ.

ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಪ್ರೋಟೀನ್ ಆಮದು ಗ್ರಾಹಕಗಳು, ಪೆರಾಕ್ಸಿನ್ಗಳಾದ ಪಿಎಎಕ್ಸ್ 5 (PEX5) ಮತ್ತು ಪಿಇಎಕ್ಸ್ 7 (PEX7), ತಮ್ಮ ಸರಕುಗಳೊಂದಿಗೆ (ಕ್ರಮವಾಗಿ ಪಿಟಿಎಸ್ 1 ಅಥವಾ ಪಿಟಿಎಸ್ 2 ಅಮೈನೊ ಆಸಿಡ್ ಅನುಕ್ರಮವನ್ನು ಒಳಗೊಂಡಿರುತ್ತದೆ) ಪೆರಾಕ್ಸಿಸೋಮ್‌ಗೆ ಹೋಗುತ್ತವೆ, ಅಲ್ಲಿ ಅದು ಸರಕುಗಳನ್ನು ಪೆರಾಕ್ಸಿಸೋಮಲ್ ಮ್ಯಾಟ್ರಿಕ್ಸ್‌ಗೆ ಬಿಡುಗಡೆ ಮಾಡುತ್ತದೆ ಮತ್ತು ನಂತರ ಸೈಟೋಸೊಲ್‌ಗೆ ಹಿಂತಿರುಗುತ್ತದೆ - ಮರುಬಳಕೆ ಹೆಸರಿನ ಒಂದು ಹೆಜ್ಜೆ. ಪೆರಾಕ್ಸಿಸೋಮಲ್ ಪ್ರೋಟೀನ್ ಗುರಿಯ ವಿಶೇಷ ವಿಧಾನವನ್ನು ಪಿಗ್ಗಿ ಬ್ಯಾಕಿಂಗ್ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ. ಈ ವಿಶಿಷ್ಟ ವಿಧಾನದಿಂದ ರವಾನೆಯಾಗುವ ಪ್ರೋಟೀನ್‌ಗಳು, ಅಂಗೀಕೃತ ಪಿಟಿಎಸ್ ಹೊಂದಿಲ್ಲ, ಆದರೆ ಸಂಕೀರ್ಣವಾಗಿ ಸಾಗಿಸಲು ಪಿಟಿಎಸ್ ಪ್ರೋಟೀನ್ ಅನ್ನು ಬಂಧಿಸುತ್ತವೆ.[೨೬] ಆಮದು ಚಕ್ರವನ್ನು ವಿವರಿಸುವ ಮಾದರಿಯನ್ನು ವಿಸ್ತೃತ ನೌಕೆಯ ಕಾರ್ಯವಿಧಾನ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ.[೨೭] ಸೈಟೋಸೊಲ್‌ಗೆ ಗ್ರಾಹಕಗಳನ್ನು ಮರುಬಳಕೆ ಮಾಡಲು ಎಟಿಪಿ ಜಲವಿಚ್ಛೇದನೆ ಅಗತ್ಯವಿದೆ ಎಂಬುದಕ್ಕೆ ಈಗ ಪುರಾವೆಗಳಿವೆ. ಅಲ್ಲದೆ, ಪೆರಾಕ್ಸಿಸೋಮ್‌ನಿಂದ ಸೈಟೋಸೊಲ್‌ಗೆ ಪಿಇಎಕ್ಸ್ 5 (PEX5) ರಫ್ತು ಮಾಡಲು ಸರ್ವತ್ರೀಕರಣವು ನಿರ್ಣಾಯಕವಾಗಿದೆ. ಪೆರಾಕ್ಸಿಸೋಮಲ್ ಮೆಂಬರೇನ್‌ನ ಜೈವಿಕ ಉತ್ಪತ್ತಿ ಮತ್ತು ಪೆರಾಕ್ಸಿಸೋಮಲ್ ಮೆಂಬರೇನ್ ಪ್ರೋಟೀನ್‌ಗಳ (ಪಿಎಮ್‌ಪಿ/PMPs)) ಅಳವಡಿಕೆಗೆ ಪೆರಾಕ್ಸಿನ್‌ಗಳಾದ ಪಿಎಎಕ್ಸ್ 19 (PEX19), ಪಿಎಕ್ಸ್ 3 (PEX3) ಮತ್ತು ಪಿಎಕ್ಸ್ 16 (PEX16) ಅಗತ್ಯವಿರುತ್ತದೆ. ಪಿಎಕ್ಸ್ 19 (PEX19),ಪಿಎಮ್‌ಪಿ (PMPs) ಗ್ರಾಹಕ ಮತ್ತು ಚಾಪೆರೋನ್ ಆಗಿದೆ, ಇದು ಪಿಎಮ್‌ಪಿಗಳನ್ನು ಬಂಧಿಸುತ್ತದೆ ಮತ್ತು ಅವುಗಳನ್ನು ಪೆರಾಕ್ಸಿಸೋಮಲ್ ಮೆಂಬರೇನ್‌ಗೆ ಹಾಯಿಸುತ್ತದೆ, ಅಲ್ಲಿ ಇದು ಪೆರಾಕ್ಸಿಸೋಮಲ್ ಇಂಟಿಗ್ರಲ್ ಮೆಂಬರೇನ್ ಪ್ರೋಟೀನ್ ಪಿಇಎಕ್ಸ್ 3 (PEX3) ನೊಂದಿಗೆ ಸಂವಹಿಸುತ್ತದೆ. ಪಿಎಮ್‌ಪಿಗಳನ್ನು ನಂತರ ಪೆರಾಕ್ಸಿಸೋಮಲ್ ಮೆಂಬರೇನ್‌ಗೆ ಸೇರಿಸಲಾಗುತ್ತದೆ.

ಪೆರಾಕ್ಸಿಸೋಮ್‌ಗಳ ಅವನತಿಯನ್ನು ಪೆಕ್ಸೊಫಾಗಿ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ.[೨೮]

ಪೆರಾಕ್ಸಿಸೋಮ್ ಸಂವಹನ

ಪೆರಾಕ್ಸಿಸೋಮ್‌ಗಳ ವೈವಿಧ್ಯಮಯ ಕಾರ್ಯಗಳಿಗೆ ಎಂಡೋಪ್ಲಾಸ್ಮಿಕ್ ರೆಟಿಕ್ಯುಲಮ್ (ಇಆರ್), ಮೈಟೊಕಾಂಡ್ರಿಯಾ, ಲಿಪಿಡ್ ಹನಿಗಳು ಮತ್ತು ಲೈಸೋಸೋಮ್‌ಗಳಂತಹ ಸೆಲ್ಯುಲಾರ್ ಲಿಪಿಡ್ಚಯಾಪಚಯ ಕ್ರಿಯೆಯಲ್ಲಿ ತೊಡಗಿರುವ ಅನೇಕ ಆರ್ಗನೆಲ್ಲೆಗಳೊಂದಿಗಿನ ಕ್ರಿಯಾತ್ಮಕಸಂವಹನ ಮತ್ತು ಸಹಕಾರ ಅಗತ್ಯ.[೨೯]

ಪೆರಾಕ್ಸಿಸೋಮ್‌ಗಳು ಮೈಟೊಕಾಂಡ್ರಿಯದೊಂದಿಗೆ ಹಲವಾರು ಚಯಾಪಚಯ ಮಾರ್ಗಗಳಲ್ಲಿ ಸಂವಹನನಡೆಸುತ್ತವೆ, ಜೊತೆಗೆ ಕೊಬ್ಬಿನಾಮ್ಲಗಳ β- ಆಕ್ಸಿಡೀಕರಣ ಮತ್ತು ಪ್ರತಿಕ್ರಿಯಾತ್ಮಕ ಆಮ್ಲಜನಕಪ್ರಭೇದಗಳೊಂದಿಗೂ ಚಯಾಪಚಯ ಮಾರ್ಗಗಳಲ್ಲಿ ಸಂವಹನನಡೆಸುತ್ತವೆ.[] ಎರಡೂಅಂಗಗಳು ಎಂಡೋಪ್ಲಾಸ್ಮಿಕ್ ರೆಟಿಕ್ಯುಲಮ್ (ಇಆರ್) ನೊಂದಿಗೆ ನಿಕಟ ಸಂಪರ್ಕದಲ್ಲಿವೆ ಮತ್ತುಆರ್ಗನೆಲ್ ವಿದಳನ ಅಂಶಗಳು ಸೇರಿದಂತೆ ಹಲವಾರು ಪ್ರೋಟೀನ್‌ಗಳನ್ನು ಹಂಚಿಕೊಳ್ಳುತ್ತವೆ.[೩೦] ಪೆರಾಕ್ಸಿಸೋಮ್‌ಗಳು ಎಂಡೋಪ್ಲಾಸ್ಮಿಕ್ ರೆಟಿಕ್ಯುಲಮ್ (ಇಆರ್) ನೊಂದಿಗೆ ಸಂವಹನನಡೆಸುತ್ತವೆ ಮತ್ತು ನರ ಕೋಶಗಳಿಗೆ ಮುಖ್ಯವಾದ ಈಥರ್ ಲಿಪಿಡ್‌ಗಳ (ಪ್ಲಾಸ್ಮಾಲೋಜೆನ್) ಸಂಶ್ಲೇಷಣೆಯಲ್ಲಿ ಸಹಕರಿಸುತ್ತವೆ (ಮೇಲೆ ನೋಡಿ). ಆರ್ಗನೆಲ್ಲೆ ನಡುವಿನ ದೈಹಿಕ ಸಂಪರ್ಕವನ್ನು ಹೆಚ್ಚಾಗಿ ಮೆಂಬರೇನ್ ಸಂಪರ್ಕ ತಾಣಗಳಿಂದಮಧ್ಯಸ್ಥಿಕೆ ವಹಿಸುತ್ತವೆ. ಅಲ್ಲಿ ಸಣ್ಣ ಆರ್ಗನೆಲ್ಲೆ ವರ್ಗಾವಣೆಯನ್ನುಶಕ್ತಗೊಳಿಸಲು ಈ ಎರಡೂ ಆರ್ಗನೆಲ್ಲೆ ಗಳ ಪೊರೆಗಳನ್ನುದೈಹಿಕವಾಗಿ ಜೋಡಿಸಲಾಗುತ್ತದೆ, ಇದು ಆರ್ಗನೆಲ್ಲೆ ಗಳ ಸಂವಹನವನ್ನುಸಕ್ರಿಯಗೊಳಿಸುತ್ತದೆ, ಮತ್ತು ಪರೋಕ್ಷವಾಗಿ ಮಾನವನ ಆರೋಗ್ಯಕ್ಕೂ ಸಹಕಾರಿಯಾಗಿದೆ.[೩೧] ಪೊರೆಯ ಸಂಪರ್ಕಗಳ ಬದಲಾವಣೆಗಳನ್ನು ವಿವಿಧ ರೋಗಗಳಲ್ಲಿ ಗಮನಿಸಲಾಗಿದೆ.

ಸಂಯೋಜಿತ ವೈದ್ಯಕೀಯ ಪರಿಸ್ಥಿತಿಗಳು

ಪೆರಾಕ್ಸಿಸೋಮಲ್ ಅಸ್ವಸ್ಥತೆಗಳು ವೈದ್ಯಕೀಯ ಪರಿಸ್ಥಿತಿಗಳ ಒಂದು ವರ್ಗವಾಗಿದ್ದು, ಇದು ಸಾಮಾನ್ಯವಾಗಿ ಮಾನವ ನರಮಂಡಲದ ಮೇಲೆ ಪರಿಣಾಮ ಬೀರುತ್ತದೆ ಮತ್ತು ಇತರ ಅನೇಕಅಂಗ ವ್ಯವಸ್ಥೆಗಳ ಮೇಲೆ ಪರಿಣಾಮ ಬೀರುತ್ತದೆ. ಎರಡು ಸಾಮಾನ್ಯಉದಾಹರಣೆಗಳೆಂದರೆ ಎಕ್ಸ್-ಲಿಂಕ್ಡ್ ಅಡ್ರಿನೊಲುಕೋಡಿಸ್ಟ್ರೋಫಿ ಮತ್ತು ಪೆರಾಕ್ಸಿಸೋಮ್ಬಯೋಜೆನೆಸಿಸ್ ಅಸ್ವಸ್ಥತೆಗಳು.[೩೨][೩೩]

ಜೀನ್‌ಗಳು

ಪಿಇಎಕ್ಸ್ (PEX) ಜೀನ್‌ಗಳು ಮೇಲೆ ವಿವರಿಸಿದಂತೆ ಸರಿಯಾದ ಪೆರಾಕ್ಸಿಸೋಮ್ ಜೋಡಣೆಗೆ ಅಗತ್ಯವಾದ ಪ್ರೋಟೀನ್ ಯಂತ್ರೋಪಕರಣಗಳನ್ನು ("ಪೆರಾಕ್ಸಿನ್ಗಳು") ಎನ್ಕೋಡ್ ಮಾಡುತ್ತದೆ. ಮೆಂಬ್ರೇನ್ಜೋಡಣೆ ಮತ್ತು ನಿರ್ವಹಣೆಗೆ ಇವುಗಳಲ್ಲಿ ಮೂರು (ಪೆರಾಕ್ಸಿನ್/PEX 3, 16, ಮತ್ತು 19) ಅಗತ್ಯವಿರುತ್ತದೆ ಮತ್ತು ಮ್ಯಾಟ್ರಿಕ್ಸ್ (ಲುಮೆನ್) ಕಿಣ್ವಗಳ ಆಮದು ಇಲ್ಲದೆ ಸಂಭವಿಸಬಹುದು. ಅಂಗದ ಪ್ರಸರಣವನ್ನು ಪೆಕ್ಸ್ 11 ಪಿ (Pex11p) ನಿಯಂತ್ರಿಸುತ್ತದೆ. ಪೆರಾಕ್ಸಿನ್ ಪ್ರೋಟೀನ್‌ಗಳನ್ನು ಎನ್ಕೋಡ್ ಮಾಡುವ ಜೀನ್‌ಗಳು ಸೇರಿವೆ: PEX1, PEX2 (PXMP3),PEX3,PEX5,PEX6,PEX7,PEX9,[೩೪][೩೫] PEX10,PEX11A,PEX11B,PEX11G,PEX12,PEX13 PEX14,PEX16,PEX19,PEX26,PEX28,PEX30, ಮತ್ತು PEX31. ಜೀವಿಗಳ ನಡುವೆ, ಪಿಎಕ್ಸ್ ಸಂಖ್ಯೆ ಮತ್ತು ಕಾರ್ಯವು ಭಿನ್ನವಾಗಿರುತ್ತದೆ.

ವಿಕಸನೀಯ ಮೂಲಗಳು

ಪೆರಾಕ್ಸಿಸೋಮ್‌ಗಳ ಪ್ರೋಟೀನ್ ಅಂಶವು ಜಾತಿಗಳು ಅಥವಾ ಜೀವಿಗಳಲ್ಲಿ ಬದಲಾಗುತ್ತದೆ, ಆದರೆ ಎಂಡೋಸಿಂಬಿಯೋಟಿಕ್ ಮೂಲವನ್ನು ಸೂಚಿಸಲು ಅನೇಕ ಪ್ರಭೇದಗಳಿಗೆ ಸಾಮಾನ್ಯವಾದ ಪ್ರೋಟೀನ್‌ಗಳ ಉಪಸ್ಥಿತಿಯನ್ನು ಬಳಸಲಾಗುತ್ತದೆ; ಅಂದರೆ, ಪೆರಾಕ್ಸಿಸೋಮ್‌ಗಳು ಬ್ಯಾಕ್ಟೀರಿಯಾದಿಂದ ವಿಕಸನಗೊಂಡು ದೊಡ್ಡ ಕೋಶಗಳನ್ನುಪರಾವಲಂಬಿಗಳಾಗಿ ಆಕ್ರಮಿಸಿದವು ಮತ್ತು ಕ್ರಮೇಣ ಸಹಜೀವನದ ಸಂಬಂಧವನ್ನುವಿಕಸಿಸಿದವು[೩೬].ಆದಾಗ್ಯೂ, ಇತ್ತೀಚಿನ ಆವಿಷ್ಕಾರಗಳಿಂದ ಈ ದೃಷ್ಟಿಕೋನವನ್ನುಪ್ರಶ್ನಿಸಲಾಗಿದೆ.[೩೭] ಉದಾಹರಣೆಗೆ, ಪೆರಾಕ್ಸಿಸೋಮ್-ಕಡಿಮೆ ರೂಪಾಂತರಿತ ರೂಪಗಳು ವೈಲ್ಡ ಮಾದರಿಯ ಜೀನ್ ಅನ್ನು ಪರಿಚಯಿಸಿದ ನಂತರ ಪೆರಾಕ್ಸಿಸೋಮ್‌ಗಳನ್ನು ಪುನಃಸ್ಥಾಪಿಸಬಹುದು.

ಪೆರಾಕ್ಸಿಸೋಮಲ್ ಪ್ರೋಟಿಯೋಮ್‌ನ ಎರಡು ಸ್ವತಂತ್ರ ವಿಕಸನೀಯವಿಶ್ಲೇಷಣೆಗಳು ಪೆರಾಕ್ಸಿಸೋಮಲ್ ಆಮದು ಯಂತ್ರೋಪಕರಣಗಳು ಮತ್ತು ಎಂಡೊಪ್ಲಾಸ್ಮಿಕ್ರೆಟಿಕ್ಯುಲಮ್ ನಲ್ಲಿನ ಇಆರ್ಎಡಿ (ERAD) ಮಾರ್ಗದ ನಡುವೆ ಹೋಮೋಲಜೀಸ್ ಅನ್ನುಕಂಡುಕೊಂಡವು,[೩೮][೩೯] ಜೊತೆಗೆ ಮೈಟೊಕಾಂಡ್ರಿಯದಿಂದ ನೇಮಕಗೊಂಡ ಹಲವಾರು ಚಯಾಪಚಯ ಕಿಣ್ವಗಳು ಬೆಳಕಿಗೆ ಬಂದವು.[೩೯] ಇತ್ತೀಚೆಗೆ,ಪೆರಾಕ್ಸಿಸೋಮ್ ಆಕ್ಟಿನೊಬ್ಯಾಕ್ಟೀರಿಯಲ್ ಮೂಲವನ್ನು ಹೊಂದಿರಬಹುದು ಎಂದುಸೂಚಿಸಲಾಗಿದೆ,[೪೦] ಆದಾಗ್ಯೂ, ಇದು ವಿವಾದಾಸ್ಪದವಾಗಿದೆ.[೪೧]

ಇತರ ಸಂಬಂಧಿತ ಆರ್ಗನೆಲ್ಲ್ ಗಳು

ಇವುಗಳು ಇತರ ಸೂಕ್ಷ್ಮಾಣುದೇಹದ ಆರ್ಗನೆಲ್ಲೆ ಗಳ ಕುಟುಂಬಕ್ಕೆ ಸೇರಿಸವುಗಳಾಗಿರುತ್ತವೆ, ಸಸ್ಯಗಳು ಮತ್ತು ತಂತುಗಳುಳ್ಳಶಿಲೀಂಧ್ರಗಳ ಗ್ಲೈಆಕ್ಸಿಸೋಮ್ಸ, ಕೈನೆಟೊಪ್ಲಾಸ್ಟಿಡ್ಸ ಗಳ ಗ್ಲೈಕೊಸೊಮ್ಸ್ [೪೨] ಮತ್ತು ತಂತುಗಳುಳ್ಳ ಶಿಲೀಂಧ್ರಗಳ ವೋರೋನಿನ್ ದೇಹಗಳು.

ಸಹ ನೋಡಿಉಲ್ಲೇಖಗಳು

ಟೆಂಪ್ಲೇಟು:Portal

ಉಲ್ಲೇಖಗಳು

  1. ಟೆಂಪ್ಲೇಟು:Cite web
  2. ಟೆಂಪ್ಲೇಟು:Cite journal
  3. ಟೆಂಪ್ಲೇಟು:Cite journal
  4. ೪.೦ ೪.೧ ೪.೨ ೪.೩ ೪.೪ ಟೆಂಪ್ಲೇಟು:Cite journal
  5. ಟೆಂಪ್ಲೇಟು:Cite journal
  6. ಟೆಂಪ್ಲೇಟು:Cite book
  7. ೭.೦ ೭.೧ ಟೆಂಪ್ಲೇಟು:Cite journal
  8. ಟೆಂಪ್ಲೇಟು:Cite journal
  9. ಟೆಂಪ್ಲೇಟು:Cite journal
  10. ಟೆಂಪ್ಲೇಟು:Cite book
  11. ಟೆಂಪ್ಲೇಟು:Cite book
  12. ಟೆಂಪ್ಲೇಟು:Cite book
  13. ೧೩.೦ ೧೩.೧ ಟೆಂಪ್ಲೇಟು:Cite book
  14. ೧೪.೦ ೧೪.೧ ಟೆಂಪ್ಲೇಟು:Cite journal
  15. ಟೆಂಪ್ಲೇಟು:Cite journal
  16. ಟೆಂಪ್ಲೇಟು:Cite journal
  17. ಟೆಂಪ್ಲೇಟು:Cite journal
  18. ಟೆಂಪ್ಲೇಟು:Cite journal
  19. ಟೆಂಪ್ಲೇಟು:Cite journal
  20. ಟೆಂಪ್ಲೇಟು:Cite journal
  21. ಟೆಂಪ್ಲೇಟು:Cite journal
  22. ಟೆಂಪ್ಲೇಟು:Cite journal
  23. ಟೆಂಪ್ಲೇಟು:Cite journal
  24. ಟೆಂಪ್ಲೇಟು:Cite journal
  25. ಟೆಂಪ್ಲೇಟು:Cite journal
  26. ಟೆಂಪ್ಲೇಟು:Cite journal
  27. ಟೆಂಪ್ಲೇಟು:Cite journal
  28. ಟೆಂಪ್ಲೇಟು:Cite journal
  29. ಟೆಂಪ್ಲೇಟು:Cite journal
  30. ಟೆಂಪ್ಲೇಟು:Cite journal
  31. ಟೆಂಪ್ಲೇಟು:Cite journal
  32. ಟೆಂಪ್ಲೇಟು:Cite journal
  33. ಟೆಂಪ್ಲೇಟು:Cite journal
  34. ಟೆಂಪ್ಲೇಟು:Cite journal
  35. ಟೆಂಪ್ಲೇಟು:Cite journal
  36. ಟೆಂಪ್ಲೇಟು:Cite journal
  37. ಟೆಂಪ್ಲೇಟು:Cite journal
  38. ಟೆಂಪ್ಲೇಟು:Cite journal
  39. ೩೯.೦ ೩೯.೧ ಟೆಂಪ್ಲೇಟು:Cite journal
  40. ಟೆಂಪ್ಲೇಟು:Cite journal
  41. ಟೆಂಪ್ಲೇಟು:Cite journal
  42. ಟೆಂಪ್ಲೇಟು:Cite journal

ಹೆಚ್ಚಿನ ಓದುವಿಕೆ

ಟೆಂಪ್ಲೇಟು:Refbegin

ಟೆಂಪ್ಲೇಟು:Refend

ಬಾಹ್ಯ ಲಿಂಕ್‌ಗಳು

ಟೆಂಪ್ಲೇಟು:Wikiversity