ಚಲನಶಕ್ತಿ

testwikiದಿಂದ
ನ್ಯಾವಿಗೇಷನ್‌ಗೆ ಹೋಗು ಹುಡುಕಲು ಹೋಗು

ಟೆಂಪ್ಲೇಟು:Infobox ಭೌತಶಾಸ್ತ್ರದಲ್ಲಿ ಯಾವುದೇ ಒಂದು ವಸ್ತುವಿನ ಚಲನಶಕ್ತಿಯು ಆ ವಸ್ತುವಿನ ಚಲನೆ ಅಥವಾ ಗತಿಯಿಂದ ಪಡೆಯುವಂತ ಶಕ್ತಿಯಾಗಿರುತ್ತದೆ. ಚಲನಶಕ್ತಿಯು ಒಂದು ವಸ್ತುವನ್ನು ನಿಶ್ಚಲ ಸ್ಥಿತಿಯಿಂದ ಗೊತ್ತಾದ ವೇಗಕ್ಕೆ ವೇಗೋತ್ಕರ್ಷಗೊಳಿಸಲು ಮಾಡಬೇಕಾಗುವ ಕೆಲಸ ಎಂದು ವ್ಯಾಖ್ಯಾನಿಸಲಾಗಿದೆ. ವೇಗೋತ್ಕರ್ಷಗೊಂಡಾಗ ಪಡೆದಿರುವಂತಹ ಶಕ್ತಿಯನ್ನು, ಆ ವಸ್ತುವು ತನ್ನ ವೇಗ ಬದಾಲಯಿಸುವವರೆಗೂ ಉಳಸಿಕೊಂಡಿರುತ್ತದೆ. ಆ ವಸ್ತುವನ್ನು ಪಡೆದ ವೇಗದಿಂದ ನಿಶ್ಚಲ ಸ್ತಿತಿಗೆ ತರಲು, ಅದೇ ಮೊತ್ತದ ಕೆಲಸ ಬೇಕಾಗುತ್ತದೆ.[] ಶಾಸ್ತ್ರೀಯ ಯಂತ್ರಶಾಸ್ತ್ರದ ಪ್ರಕಾರ ಒಂದು ತಿರುಗದೇ ಇರುವಂತಹ, v ವೇಗದಲ್ಲಿ ಚಲಿಸುತ್ತಿರುವ, m ದ್ರವ್ಯರಾಶಿ ಇರುವ ವಸ್ತುವಿನ ಚಲನ ಶಕ್ತಿಯು 12mv2 ಆಗಿರುತ್ತದೆ. ಚಲನ ಶಕ್ತಿಯ ಮಾನಕ ಜೌಲ್ (Joule) ಆಗಿದೆ.

ಇತಿಹಾಸ

ಚಲನ ಶಕ್ತಿಯ ಮೂಲತತ್ವ E ∝ mv² ಮೊದಲು ಪರಿಚಯಿಸದವರು ಗೊತ್ತ್ಫ಼್ರಿಎದ್ ಲೆಇಬ್ನಿಜ಼್ (Gottfried Leibniz) ಮತ್ತು ಜೊಹ್ನ್ ಬೆರ್ನೊಉಲ್ಲಿ (Johann Bernoulli). ನೆದೆರಲ್ಯಾಂಡಿನ Willem 's Gravesande ಅವರು ಚಲನ ಶಕ್ತಿಯ ಈ ಸಮೀಕರಣವನ್ನು ಪ್ರಾಯೂಗಿಕವಾಗಿ ತೂರಿಸಿಕೊಟ್ಟರು.

Willem 's Gravesande ರವರು, ಒಂದು ಗೊತ್ತದ ತೂಕದ ಇಟ್ಟಿಗೆಯನ್ನು ವಿವಿಧ ಎತ್ತರಗಳಿಂದ ಮತ್ತು ವಿವಿಧ ವೇಗಗಳಿಂದ ಜೇಡಿಮಣ್ಣಿನ ಮೇಲೆ ಬೀಳಿಸಿ, ಇಟ್ಟಿಗೆ ನುಗ್ಗುವ ಆಳವನ್ನು ಗೊತ್ತು ಮಾಡಿಕೊಂಡು, ಅದರ ಚಲನಾ ವೇಗಕ್ಕೆ ಅನುಪಾತವಾಗಿರುತ್ತದೆ ಎಂದು ತೋರಿಸದರು.[]

ನ್ಯೂಟನ್‍ನ ಚಲನ ಶಕ್ತಿ

ಶಾಸ್ತ್ರೀಯ ಯಂತ್ರಶಾಸ್ತ್ರದಲ್ಲಿ, ಒಂದು 'ಬಿಂದುವಸ್ತುವಿನ' ಅಥವಾ ಬಿಂದುವಿನಂತಹ ವಸ್ತುವಿನ (ಒಂದು ವಸ್ತುವಿನ ದ್ರವ್ಯರಾಶಿಯು ಒಂದು ಚಿಕ್ಕ ಬಿಂದುವಿನಲ್ಲಿ ಇರುವಷ್ಟು ಆ ವಸ್ತು ಸಣ್ಣದಾಗಿದ್ದರೆ, ಅದನ್ನು 'ಬಿಂದುವಸ್ತು'ವೆಂದು ಊಹಿಸಬಹುದು) ಚಲನ ಶಕ್ತಿಯು, ಅದರ ದ್ರವ್ಯರಾಶಿ ಮತ್ತು ಜವದಮೇಲೆ ಅವಲಂಬಿತವಾಗಿರುತ್ತದೆ. ಚಲನ ಶಕ್ತಿಯು ಅದರ ಅರ್ದದಷ್ಟು ದ್ರವ್ಯರಾಶಿ ಮತ್ತು ವೇಗದ ಗುಣಲಬ್ಢವಾಗಿರುತ್ತದೆ.

Ek=12mv2

ಇಲ್ಲಿ ದ್ರವ್ಯರಾಶಿಯು m ಮತ್ತು ವೇಗವು v ಆಗಿರುತ್ತದೆ. ದ್ರವ್ಯರಾಶಿಯನ್ನು ಕಿಲೋ ಗ್ರಾಮ್, ಮತ್ತು ದೂರವನ್ನು ಮೀಟರ್, ಸಮಯವನ್ನು ಸೆಕೆಂಡ್ ಮಾನಕದಲ್ಲಿ ಪರಿಗಣಿಸಿದರೆ, ಚಲನ ಶಕ್ತಿಯ ಮಾನಕವು ಜೌಲ್ ಅಗಲಿದೆ. ಉದಾಹಾರಣೆಗೆ,೮೦kg ತೂಕದ ವಸ್ತು ೧೮m/s ಚಲಿಸಿದರೆ, ಅದರ ಚಲನಶಕ್ತಿಯು, ಈ ಕೆಳಗಿನಂತೆ, ೧೨೯೬೦J (ಜೌಲ್ಸ್) ಆಗುತ್ತದೆ.

Ek=1280kg(18m/s)2=12960J=12.96kJ

ಒಂದು ವಸುವಿನ ಚಲನ ಶಕ್ತಿ ಅದರ ಚಲನ ಪರಿಮಾಣ(ರಭಸ)ದ ಸಂಬಂಧ ಸೂಚಿಸುವ ಸಮೀಕರಣವು ಈ ಕೆಳಕಂಡಂತಿದೆ:

Ek=p22m

ಇಲ್ಲಿ:

p ಚಲನ ಪರಿಮಾಣ ಅಥಾವ ರಭಸ ಮತ್ತು
m ವಸ್ತುವಿನ ದ್ರವ್ಯ್ರರಾಶಿ ಆಗಿರುತ್ತದೆ.

ನಿಷ್ಪತ್ತಿ

ಒಂದು ಅತಿ ಚಿಕ್ಕ ಸಮಯ(dt) ಯಲ್ಲಿ ವೇಗೊತ್ಕರ್ಷಕ್ಕೆ ಒಳಪಟ್ಟ ಕಣ ಮಾಡುವ ಕೆಲಸವನ್ನು ಬಲ ಮತ್ತು ಸ್ಥಾನಪಲ್ಲಟಗಳ ಗುಣಾಕಾರದಿಂದ ಪಡೆಯಬಹುದು.

𝐅d𝐱=𝐅𝐯dt=d𝐩dt𝐯dt=𝐯d𝐩=𝐯d(m𝐯),

ಇಲ್ಲಿ p ಯನ್ನು m.v ಎಂದು ಪರಿಗಣಿಸಲಾಗಿದೆ. ಕಲನದ ಗುಣಾಕಾರದ ನಿಯಮವನ್ನು ಅನ್ವಯಿಸು, ಈ ಕೆಳಕಂಡಂತೆ:

d(𝐯𝐯)=(d𝐯)𝐯+𝐯(d𝐯)=2(𝐯d𝐯).

ದ್ರವ್ಯರಾಶಿಯ ಬದಾಲವಣೆ ಅಗಿಲ್ಲವೆಂದು ಪರಿಗಣಿಸಿ (dm=0), ಸಮೀಕರಣವನ್ನು ಈ ಕೆಳಗಿನಂತೆ ಬರೆಯಬಹುದು:

𝐯d(m𝐯)=m2d(𝐯𝐯)=m2dv2=d(mv22).

ಇದನ್ನು ಕಲನ ಗಣಿತದಲ್ಲಿ, ಸಂಯೋಜಿಸಿ, ಚಲನ ಶಕ್ತಿಯ ಸಮೀಕರಣ ಪಡೆಯಬಹುದು. ಸಮಯ ೦ ಯಿಂದ t ಯವರೆಗೆ ಸಂಯೋಜಿಸಿ, ವಸ್ತು v ವೇಗವನ್ನು ಪಡೆದಾಗ:

Ek=0t𝐅d𝐱=0t𝐯d(m𝐯)=0vd(mv22)=mv22.

ಚಲನ ಶಕ್ತಿಯನ್ನು, ವೇಗ ಮತ್ತು ರಭಸಗಳ ಚುಕ್ಕೆ ಗುಣಲಬ್ಡಗದ ಸಂಯೋಜನೆಯಿಂದ ಪಡೆಯಬಹುದೆಂದು ಈ ಮೇಲಿನ ಸಮೀಕರಣ ತೋರಿಸುತ್ತದೆ. ವಸ್ತುವು, ಮೊದಲು ಶೂನ್ಯ ಚಲನಶಕ್ತಿಯೊಂದಿಗೆ ನಿಶ್ಚಲ ಸ್ಥಿತಿಯಲ್ಲಿರುತ್ತದೆ ಎಂದು ಊಹಿಸಲಾಗಿದೆ.

ಇದನ್ನೂ ನೋಡಿ

ಉಲ್ಲೇಖಗಳು

ಟೆಂಪ್ಲೇಟು:Reflist