ಮಹಾವೀರ (ಗಣಿತಜ್ಞ)

testwikiದಿಂದ
ಬದಲಾವಣೆ ೦೮:೦೧, ೧೯ ಫೆಬ್ರವರಿ ೨೦೨೫ ರಂತೆ imported>ChiK ಇವರಿಂದ (clean up, replaced: . → . using AWB)
(ವ್ಯತ್ಯಾಸ) ←ಹಿಂದಿನ ಪರಿಷ್ಕರಣೆ | ಈಗಿನ ಪರಿಷ್ಕರಣೆ (ವ್ಯತ್ಯಾಸ) | ಮುಂದಿನ ಪರಿಷ್ಕರಣೆ → (ವ್ಯತ್ಯಾಸ)
ನ್ಯಾವಿಗೇಷನ್‌ಗೆ ಹೋಗು ಹುಡುಕಲು ಹೋಗು

ಮಹಾವೀರ ಕ್ರಿ.ಶ. ೯ನೇ ಶತಮಾನದ ಭಾರತೀಯ ಗಣಿತಜ್ಞ. ಇವನು ಮೈಸೂರಿನವನು.ಟೆಂಪ್ಲೇಟು:Sfnಟೆಂಪ್ಲೇಟು:Sfnಟೆಂಪ್ಲೇಟು:Sfn ಹಿರಿಯ ಆರ್ಯಭಟ (ಸು. 510) ಬ್ರಹ್ಮಗುಪ್ತ (ಸು. 628), ಮಹಾವೀರಾಚಾರ್ಯ (ಸು. 850) ಮತ್ತು ಭಾಸ್ಕರಾಚಾರ್ಯ (ಸು. 1150) ಈ ನಾಲ್ವರು ಪ್ರಾಚೀನ ಭಾರತದ ಸುಪ್ರಸಿದ್ಧ ಗಣಿತವಿದರು.

ಇವನ ಕೃತಿ ಗಣಿತ ಸಾರಸಂಗ್ರಹ. ಇವನನ್ನು ರಾಷ್ಟ್ರಕೂಟ ಪ್ರಭು ಅಮೋಘವರ್ಷನು ಪೋಷಿಸಿದನು.ಟೆಂಪ್ಲೇಟು:Sfn ಇವನು ಗಣಿತವನ್ನು ಜ್ಯೋತಿಷದಿಂದ ಬೇರ್ಪಡಿಸಿದನು. ಇದು ಕೇವಲ ಗಣಿತಕ್ಕೇ ಸೀಮಿತವಾದ ಮೊದಲ ಪ್ರಾಚೀನ ಕೃತಿಯೆಂದು ಪರಿಗಣಿತವಾಗಿದೆ.[] ಇವನು ಖ್ಯಾತ ಗಣಿತಜ್ಞರಾದ ಬ್ರಹ್ಮಗುಪ್ತ ಮತ್ತು ಆರ್ಯಭಟರು ವಾದಿಸಿದ್ದ ಹಲವಾರು ಸಂಗತಿಗಳನ್ನೇ ವಿವರಿಸಿದನಾದರೂ ಇವನ ವಿವರಣೆ ಹೆಚ್ಚು ಸ್ಫುಟವಾಗಿದೆ. ಇವನ ಪ್ರಸಿದ್ಧಿ ಇಡೀ ದಕ್ಷಿಣ ಭಾರತದಲ್ಲಿ ಪಸರಿಸಿ ಆ ಕಾಲದ ಹಲವಾರು ಗಣಿತಜ್ಞರ ಮೇಲೆ ಪ್ರಭಾವ ಬೀರಿತು.ಟೆಂಪ್ಲೇಟು:Sfn ಪಾವಲೂರಿ ಮಲ್ಲಣ ಇವನ ಕೃತಿಯನ್ನು ಸಾರ ಸಂಗ್ರಹ ಗಣಿತಂ ಎಂಬ ಹೆಸರಿನಲ್ಲಿ ತೆಲುಗು ಭಾಷೆಗೆ ತರ್ಜುಮೆ ಮಾಡಿದನು.[]

ಈತನಲ್ಲಿ ನುರಿತ ಗಣಿತವಿದನ ಶಿಸ್ತು ಸಂಯಮಗಳೂ ಕ್ರಿಯಾಶೀಲ ಕವಿಯ ಪ್ರತಿಭೆ ದಿಟ್ಟತನಗಳೂ ಮೇಳವಿಸಿದ್ದವು. ಅಲ್ಲಿಯ ತನಕ ತಿಳಿದಿದ್ದ ವಿಶಿಷ್ಟ ಗಣಿತವನ್ನೂ ಈತ ಅತ್ಯಂತ ಕೌಶಲದಿಂದ ಉತ್ತಮ ಪಠ್ಯಪುಸ್ತಕದಲ್ಲಿ ಕ್ರೋಡೀಕರಿಸಿದ. ಮುಂದೆ ಹಲವಾರು ಶತಮಾನ ಪರ್ಯಂತ ಈ ಪುಸ್ತಕ ದಕ್ಷಿಣ ಭಾರತದಲ್ಲಿ ಪ್ರಚಾರದಲ್ಲಿತ್ತು. ಇವನು ನಿಯಮಗಳನ್ನು ಸ್ಪಷ್ಟವಾಗಿಯೂ ನಿಷ್ಕೃಷ್ಟವಾಗಿಯೂ ನಿರೂಪಿಸಿದ್ದಾನೆ. ಗಣಿತದ ಅನೇಕ ಕ್ರಿಯೆಗಳನ್ನು ಸುಲಭ ಮತ್ತು ಹರಿತಗೊಳಿಸಿದ್ದಾನೆ. ಹಲವಾರು ಪ್ರಮೇಯಗಳನ್ನು ಸಾರ್ವತ್ರೀಕರಿಸಿದ್ದಾನೆ. ಅಲ್ಲದೆ ಉದಾಹರಣೆಗಳನ್ನು ನೀಡುವುದರ ಮೂಲಕ ಹೊಸ ಕ್ರಮಗಳ ಮೇಲೆ ಬೆಳಕು ಬೀರಿದ್ದಾನೆ ಕೂಡ. ಗಣಿತಸಾರಸಂಗ್ರಹ ಉತ್ತಮ ಗಣಿತ ಪ್ರಶ್ನೆಗಳ ಒಂದು ಬೊಕ್ಕಸ. ಇದರಲ್ಲಿ ಇರುವ ಹಲವಾರು ಪ್ರಶ್ನೆಗಳು ಗಣಿತದ ನವುರಾದ ಸೂಕ್ಷ್ಮತೆ, ಕಾವ್ಯಸೌಂದರ್ಯ ಮತ್ತು ಸುಹಾಸ ಸನ್ನಿವೇಶಗಳಿಂದ ಜೀವಂತವಾಗಿವೆ. ಯಾವುದೇ ಒಂದು ಪಠ್ಯಪುಸ್ತಕದಲ್ಲಿ ಈ ಎಲ್ಲ ಗುಣಗಳೂ ಇರುವುದು ವಿರಳ. ಒಂದು ಪಠ್ಯಪುಸ್ತಕದಲ್ಲಿ ಯಾವ ಭಾವನೆ ಹಳೆಯದು ಯಾವುದು ಸ್ವಂತವಾದುದ್ದು ಎಂದು ನಿರ್ಧರಿಸುವುದು ಕಷ್ಟ.

ಗ್ರಂಥದಲ್ಲಿರುವ ವಿಷಯಗಳು

ಇದರಲ್ಲಿರುವ ವಿಷಯಗಳ ಸ್ಥೂಲ ವಿವರ ಹೀಗಿದೆ:

ಮೊದಲ ಅಧ್ಯಾಯ

ಸಂಖ್ಯಾಸಿದ್ಧಾಂತದ ಜ್ಞಾನಪ್ರಕಾಶದಿಂದ ಮೂರು ಲೋಕಗಳನ್ನೂ ಬೆಳಗಿಸುವಂಥ ಜೈನರ 24ನೆಯ ತೀರ್ಥಂಕರನಾದ ಮಹಾವೀರನಿಗೆ ಪ್ರಣಾಮ ಅರ್ಪಿಸುವುದರ ಮೂಲಕ ಒಂದನೆಯ ಅಧ್ಯಾಯ ಪ್ರಾರಂಭವಾಗುತ್ತದೆ. ಮುಂದೆ ತನ್ನ ಪೋಷಕ ರಾಜನಾದ ನೃಪತುಂಗ ಅಮೋಘವರ್ಷನಿಗೆ (815-78) ಗೌರವಾದರಪೂರ್ವಕ ಕೃತಜ್ಞತಾ ಸಮರ್ಪಣೆಯಿದೆ. ಇದಾದ ಮೇಲೆ ಗಣಿತ ಕುರಿತು ಇನ್ನೆಲ್ಲೂ ಹೇಳಿರದ ಉತ್ಸಾಹಭರಿತ ಪ್ರಶಂಸೆಯ ಮಾತು ಇದೆ. ಅನಂತರ ಅಳತೆಯ ಮಾನಗಳು, ಗಣಿತದ ಪರಿಕರ್ಮಗಳು ಮತ್ತು ಸಂಖ್ಯೆಗಳ ವಿಚಾರ ಇವೆ. ಋಣಸಂಖ್ಯೆಗಳ ಉಪಯೋಗ ನಿರ್ಧರಿಸುವ ನಿಯಮಗಳ ಸ್ಪಷ್ಟ ಉಲ್ಲೇಖವಿದೆ. ಶೂನ್ಯದ ಉಪಯೋಗವನ್ನು ವಿವರಿಸುವ ನಿಯಮಗಳ ಸ್ಪಷ್ಟ ಉಲ್ಲೇಖವಿದೆ. ಶೂನ್ಯದ ಉಪಯೋಗವನ್ನು ವಿವರಿಸುವ ನಿಯಮಗಳನ್ನು ಆಧುನಿಕ ರೀತಿಯಲ್ಲಿ ಹೀಗೆ ಬರೆಯಬಹುದು.

a ± 0 = a, a x 0 = 0, a ÷ 0 = a

ಇಲ್ಲಿ ಕೊನೆಯ ಫಲಿತಾಂಶ ತಪ್ಪು.

ಋಣ ಮತ್ತು ಧನಸಂಖ್ಯೆಗಳ ವರ್ಗಗಳು ಧನಸಂಖ್ಯೆಗಳಾಗಿರುವುದರಿಂದ ಋಣಸಂಖ್ಯೆಯ ವರ್ಗಮೂಲಕ್ಕೆ ಅಸ್ತಿತ್ವ ಇಲ್ಲ ಎಂದು ಹೇಳಿದ್ದಾನೆ.ಟೆಂಪ್ಲೇಟು:Sfn ಸಮಕಾಲೀನ ಜ್ಞಾನದ ಮಿತಿಯನ್ನು ಗ್ರಹಿಸುವಾಗ ಇದಕ್ಕಿಂತ ಹೆಚ್ಚು ಸುಸಂಬದ್ಧ ತೀರ್ಮಾನಕ್ಕೆ ಬರುವುದು ಮಹಾವೀರಾಚಾರ್ಯನಿಗೆ ಸಾಧ್ಯವಾಗಿರಲಾರದು. ಋಣಸಂಖ್ಯೆಗಳ ವರ್ಗಮೂಲವನ್ನೂ ಒಳಗೊಳ್ಳುವಂಥ ನಿಸ್ತೃತಭಾವನೆ ಸಂಖ್ಯೆಯೆಂಬ ಪದಕ್ಕೆ ಬಂದುದು 1797ರಷ್ಟು ತಡವಾಗಿ ಎಂಬುದನ್ನು ಇಲ್ಲಿ ನೆನೆಯಬಹುದು. ನಾರ್ವೇಯ ಸಿ. ವೆಸ್ಸಲ್ ಎಂಬ ಮೋಜಣಿದಾರ ಇದನ್ನು ಸಾಧಿಸಿದ.

ಎರಡನೆಯ ಅಧ್ಯಾಯ

ಎರಡನೆಯ ಅಧ್ಯಾಯ ಪೂರ್ಣಾಂಕಗಳಲ್ಲಿ ನಡೆಸುವ ಗುಣಾಕಾರ, ಭಾಗಾಹಾರ, ವರ್ಗಿಸುವುದು ಮತ್ತು ಅದರ ವಿಲೋಮ, ಘನಿಸುವುದು ಮತ್ತು ಅದರ ವಿಲೋಮ,ಟೆಂಪ್ಲೇಟು:Sfn ಸಮಾಂತರ ಮತ್ತು ಗುಣೋತ್ತರ ಶ್ರೇಣಿಗಳು ಇವನ್ನು ಕುರಿತಾಗಿದೆ.

ಪ್ರಶ್ನೆ (II 17): ಈ ಪ್ರಶ್ನೆಯಲ್ಲಿ 1. 1. 0. 1. 1. 0, 1. 1 ಎಂಬ ಅಂಕೆಗಳನ್ನು ಒಂದನೆಯ ಸ್ಥಾನದಿಂದ ಮೇಲಕ್ಕೆ (ಎಡಕ್ಕೆ) ಇದೇ ಕ್ರಮದಲ್ಲಿ ಬರೆಯಬೇಕು. ಆಗ ಒಂದು ಸಂಖ್ಯೆ ದೊರೆಯುವುದು: 11011011. ಈ ಸಂಖ್ಯೆಯನ್ನು 91ರಿಂದ ಗುಣಿಸಿದರೆ ಒಂದು ರಾಜೋಚಿತವಾದ ಹಾರವೇ ದೊರೆಯುವುದು.

ಇಲಿ ಹೇಳಿರುವ ಹಾರ ಹೀಗೆ ಬರೆಯಬಹುದು:

11  011   011  x  91 = 1  002   002   001

ಇದೇ ರೀತಿ ರಾಜೋಚಿತವಾದ ಇನ್ನೆರಡು ಹಾರಗಳಿವೆ (II II, 15):

333333666667 x 33 = 11   0000   11  0000  11

752207 x 73 = 11111111

ಮೂರನೆಯ ಮತ್ತು ನಾಲ್ಕನೆಯ ಅಧ್ಯಾಯಗಳು

ಮೂರನೆಯ ಮತ್ತು ನಾಲ್ಕನೆಯ ಅಧ್ಯಾಯಗಳಲ್ಲಿ ಭಿನ್ನರಾಶಿಗಳಲ್ಲಿ ನಡೆಸುವ ಸುಲಭ ಪರಿಕರ್ಮಗಳ ಪರಿಚಯವಿದೆ. ಮಹಾವೀರಾಚಾರ್ಯ ಅಂಶದಲ್ಲಿ ಏಕಮಾನದಿಂದ ಒಂದು ಭಿನ್ನರಾಶಿಯನ್ನು ಹಲವಾರು ಅಂಥವೇ ಪ್ರತ್ಯೇಕ ಭಿನ್ನ ರಾಶಿಗಳ ಮೊತ್ತವಾಗಿ ಬರೆಯುವುದರ ವಿಚಾರ ಸಾಕಷ್ಟು ಗಮನಹರಿಸಿದ್ದಾನೆ. ಈ ಸಮಸ್ಯೆ ಕ್ರಿ. ಪೂ. 1650ರಷ್ಟು ಹಿಂದಿನಿಂದಲೂ ಗಣಿತವಿದರಿಗೆ ಕುತೂಹಲಕಾರಿಯಾಗಿದೆ. ಇಲ್ಲಿ ಮೂರು ಇಂಥ ಪ್ರಶ್ನೆಗಳನ್ನು ಆಧುನಿಕ ಕ್ರಮದಲ್ಲಿ ಬರೆಯಲಾಗಿದೆ (II 75, 77 78):[]

(i) I=12+13+132++13n2+12.3n2

(ii) 12=12.3+13.4++1(2n1)(2n)+12n

(iii) 1n=a1n(n+a1)+a2(n+a1)(n+a1+a2)++ar1(n+a1+a2++ar2)(n+a1+a2++ar1)+arar(n+a1+a2++ar1)

ಪ್ರಶ್ನೆ (IV 4): ಒಂದು ಆನೆಯ ಹಿಂಡಿನಲ್ಲಿದ್ದ ಆನೆಗಳ ಸಂಖ್ಯೆಯ ಮೂರರಲ್ಲಿ ಒಂದಂಶ ಮತ್ತು ಉಳಿದ ಅಂಶದ ವರ್ಗಮೂಲದ ಮೂರರಷ್ಟು ಆನೆಗಳು ಬೆಟ್ಟದ ಇಳಿಜಾರಿನಲ್ಲಿದ್ದುವು; ಒಂದು ಗಂಡಾನೆ ಮೂರು ಹೆಣ್ಣಾನೆ ಸರೋವರದಲ್ಲಿ ಇದ್ದುವು. ಅಲ್ಲಿದ್ದ ಒಟ್ಟು ಸಂಖ್ಯೆ ಎಷ್ಟು? (ಉತ್ತರ 24)

ಐದನೆಯ ಅಧ್ಯಾಯ ತ್ರೈರಾಶಿಕ ಕ್ರಮ ಮತ್ತು ಅದರ ಸಾರ್ವತ್ರೀಕರಿಸಿದ ರೂಪಗಳನ್ನು ಕುರಿತಾಗಿದೆ.

ಅಧ್ಯಾಯ VI

ಹಿಂದಿನ ಅಧ್ಯಾಯಗಳಲ್ಲಿ ಗಣಿತದ ಉಪಕರಣವನ್ನು ಸೃಜಿಸಿದ ಮಹಾವೀರಾಚಾರ್ಯ ಈ ದೀರ್ಘವಾದ ಅಧ್ಯಾಯದಲ್ಲಿ ಅವನ್ನು ನಿತ್ಯಜೀವನದಲ್ಲಿ ಎದುರಾಗುವಂಥ ಹಣಸಾಲ ನೀಡಿಕೆ, ಇರುವ ವಸ್ತುಗಳ ವಿವಿಧ ಏರ್ಪಾಡುಗಳ ಸಂಖ್ಯೆ (ವಿಕಲ್ಪ-ಕಾಂಬಿನೇಶನ್), ಒಂದನೆಯ ಘಾತದ ಅನಿಶ್ಚಿತ ಸಮೀಕರಣಗಳು (first power indeterminate equations) ಮುಂತಾದ ಸಮಸ್ಯೆಗಳ ಬಿಡಿಸುವಿಕೆಗೆ ಪ್ರಯೋಗಿಸುತ್ತಾನೆ.

ಪ್ರಶ್ನೆ (VI 1281/2): ಪ್ರತಿಯೊಂದರಲ್ಲಿಯೂ ಸಮಸಂಖ್ಯೆಯಲ್ಲಿರುವ ಹನ್ನೆರಡು ದಾಳಿಂಬೇಹಣ್ಣು ರಾಶಿಗಳನ್ನು ಒಟ್ಟುಗೂಡಿಸಿ ಅವುಗಳಿಗೆ ಐದು ದಾಳಿಂಬೇ ಹಣ್ಣುಗಳನ್ನು ಸೇರಿಸಿ ಇಷ್ಟನ್ನೂ 19 ಜನ ಪ್ರಯಾಣಿಕರಿಗೆ ಸಮನಾಗಿ ಹಂಚಲಾಯಿತು. ಯಾವುದೇ ಒಂದು ರಾಶಿಯಲ್ಲಿದ್ದ ದಾಳಿಂಬೇಹಣ್ಣುಗಳ ಸಂಖ್ಯೆ ಎಷ್ಟು? (ಉತ್ತರ 17)

ಪ್ರಶ್ನೆ (VI 218): n ವಿವಿಧ ವಸ್ತುಗಳಿಂದ ಒಂದು ಸಲ r ವಸ್ತುಗಳನ್ನು ಆಯ್ದ ವಿಕಲ್ಪಗಳ (ಕಾಂಬಿನೇಶನ್ಸ್) ಸಂಖ್ಯೆಟೆಂಪ್ಲೇಟು:Sfn

n(n1)(nr+1)1.2n=n!r!(nr)!

ಈ ಸಾಮಾನ್ಯ ಸೂತ್ರವನ್ನು ಯೂರೊಪಿನಲ್ಲಿ 1634 ರಷ್ಟು ತಡವಾಗಿ ಹೆರಿಗಾನ್ ಎಂಬಾತ ಶೋಧಿಸಿದ. ಸಪ್ತಭಂಗಿಯಲ್ಲಿ ಬರುವ 7 ಎಂಬ ಸಂಖ್ಯೆಯ ಕ್ರಮಯೋಜನೆ ಮತ್ತು ವಿಕಲ್ಪಗಳ (ಪರ್ಮ್ಯುಟೇಶನ್ಸ್ ಅಂಡ್ ಕಾಂಬಿನೇಶನ್ಸ್) ಒಂದು ಸುಲಭ ಉದಾಹರಣೆ. ಮೂರು ಪ್ರತ್ಯೇಕ ವಸ್ತುಗಳಿಂದ ಕೇವಲ 7 ವಿಕಲ್ಪಗಳನ್ನು ಮಾತ್ರ ಪಡೆಯಬಹುದೆಂಬುದನ್ನು ಒಬ್ಬ ಸಾಮಾನ್ಯ ಮನುಷ್ಯನೂ ಸುಲಭವಾಗಿ ತಿಳಿಯಬಹುದು. ಜೈನರು ಅತಿ ಪ್ರಾಚೀನ ಕಾಲದಿಂದಲೂ ಗಣಿತಶಾಸ್ತ್ರವನ್ನು ತಮ್ಮ ಪವಿತ್ರ ಗ್ರಂಥಗಳಲ್ಲಿ ವಿಪುಲವಾಗಿ ಬಳಸಿಕೊಂಡು ಬಂದಿದ್ದಾರೆ. ಮೇಲಿನ ಉದಾಹರಣೆ ಇದನ್ನು ಸಮರ್ಥಿಸುತ್ತದೆ.

ಪ್ರಶ್ನೆ (VI 220): ವಜ್ರಗಳು, ನೀಲಮಣಿಗಳು, ಪಚ್ಚೆಗಲ್ಲುಗಳು ಮತ್ತು ಮುತ್ತುಗಳನ್ನು ಒಂದೇ ಎಳೆಯಲ್ಲಿ  ಕೋದು ಮಾಡಿದಂಥ ಸರದಲ್ಲಿ ಇವುಗಳ ಸ್ಥಾನ ಪಲ್ಲಟದಿಂದ ಎಷ್ಟು ಬಗೆಗಳುಂಟಾಗುತ್ತವೆ. ಎಂಬುದನ್ನು ಬೇಗನೆ ತಿಳಿಸುವಿಯಾ, ಓ ಮಿತ್ರನೇ?

ಪ್ರಶ್ನೆ (VI 287): 7 ರಿಂದ ಭಾಗಿಸಿ 3 ರಿಂದ ಗುಣಿಸಿ ವರ್ಗಿಸಿ 5ನ್ನು ಕೂಡಿಸಿ 3/5 ರಿಂದ ಭಾಗಿಸಿ ಅರ್ಧಿಸಿ ವರ್ಗಮೂಲ ತೆಗೆದಾಗ 59 ಕೊಡುವ ಸಂಖ್ಯೆ ಯಾವುದು? ಇದರಲ್ಲಿ ಅಂತರ್ಗತವಾಗಿರುವ ಕೊಂಕು ಗಮನಿಸಬೇಕು.

ಏಳನೆಯ ಮತ್ತು ಎಂಟನೆಯ ಅಧ್ಯಾಯಗಳು

ಏಳನೆಯ ಮತ್ತು ಎಂಟನೆಯ ಅಧ್ಯಾಯಗಳಲ್ಲಿ ಕ್ಷೇತ್ರಗಣಿತದ (ಮೆನ್ಸುರೇಶನ್) ಪ್ರಶ್ನೆಗಳನ್ನು ಬಿಡಿಸಲಾಗಿದೆ. ಅಲ್ಲಿ ಬಳಸಿದ ಕೆಲವು ಸೂತ್ರಗಳಿವು:

1 ಲಂಬಕೋನ ತ್ರಿಕೋನದ ಬಾಹುಗಳನ್ನು ಸಂಬಂಧಿಸುವ ಪೈಥಾಗೊರಸ್ಸನ ಸೂತ್ರ a2 = b2 + c2. ಇಲ್ಲಿ a ಕರ್ಣ.

2. △ABCಸಲೆ s(sa)(sb)(sc)

ಇಲ್ಲಿ 2s = a + b + c

3. ABCD ಚತುರ್ಭುಜದ ಸಲೆ ಮತ್ತು ಕರ್ಣಗಳ ಉದ್ದ:

(sa)(sb)(sc)(sd) ಇಲ್ಲಿ 2s = a + b + c + d

(ac+bd)(ad+bc)ab+cd,(ac+bd)(ab+cd)ad+bc

ಸೂತ್ರಗಳು ಚಕ್ರೀಯ ಚತುರ್ಭುಜಗಳಿಗೆ ಮಾತ್ರ ಅನ್ವಯವಾಗುತ್ತವೆ ಎಂಬ ವಿಷಯವನ್ನು ಮಹಾವೀರಾಚಾರ್ಯನೂ ಅವನ ಪೂರ್ವಿಕ ಬ್ರಹ್ಮಗುಪ್ತನೂ ತಿಳಿಸದೆ ತಪ್ಪು ಮಾಡಿದ್ದಾರೆ.

4. π = 3 ಅಥವಾ 10 (ಸ್ಥೂಲವಾಗಿ)

5. ಪ್ರಧಾನಾಕ್ಷ 2a ಮತ್ತು ಲಘು ಅಕ್ಷ 2b ಇರುವ ದೀರ್ಘವೃತ್ತದ ಪರಿಧಿ 24b2+16a2. ಇದರ ಸರಳರೂಪ πa135e2. ಇಲ್ಲಿ e ದೀರ್ಘವೃತ್ತದ ಉತ್ಕೇಂದ್ರತೆ.

ಆಧುನಿಕ ಯುಗದ ಯಾವ ಸೌಕರ್ಯವೂ ಇಲ್ಲದ ಕಾಲದಲ್ಲಿ ಮಹಾವೀರಾಚಾರ್ಯ ನಿಜ ಬೆಲೆಗೆ ಇಷ್ಟೊಂದು ಸಮವಾದ ಬೆಲೆಯನ್ನು ಹೇಗೆ ಪಡೆದನೆಂಬುದು ಆಶ್ಚರ್ಯಕರವಾಗಿದೆ.

ನೆರಳಿನ ಪ್ರಶ್ನೆಗಳು ಎಂಬುದನ್ನು ಒಂಬತ್ತನೆಯ ಆಧ್ಯಾಯದಲ್ಲಿ ಪರಿಶೀಲಿಸಲಾಗಿದೆ.

ಟಿಪ್ಪಣಿಗಳು

ಟೆಂಪ್ಲೇಟು:Reflist

ಉಲ್ಲೇಖಗಳು

ಟೆಂಪ್ಲೇಟು:ಭಾರತೀಯ ಗಣಿತಜ್ಞರು

  1. The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the... by Clifford A. Pickover: page 88
  2. Census of the Exact Sciences in Sanskrit by David Pingree: page 388
  3. ಟೆಂಪ್ಲೇಟು:Harvnb